
The Debian TEX sub-policy
The Debian TEX mailing list <debian-tex-maint@lists.debian.org>

generated from $Id: Debian-TeX-Policy.sgml 3911 2009-05-10 13:38:40Z preining $

Abstract

This document provides a set of rules for the packaging of applications, fonts and input files
related to TEX within the Debian GNU/Linux distribution.

Copyright Notice

Copyright © 2004-2006 Frank Küster, Richard Lewis, Norbert Preining, Ralf Stubner, Florent
Rougon

This manual is free software; you may redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2,
or (at your option) any later version.

This is distributed in the hope that it will be useful, but without any warranty; without even the
implied warranty of merchantability or fitness for a particular purpose. See the GNU General
Public License for more details.

A copy of the GNU General Public License is available as /usr/share/common-licenses/GPL
(file:///usr/share/common-licenses/GPL) in the Debian distribution or on the World
Wide Web at The GNU General Public Licence (http://www.gnu.org/copyleft/gpl.
html). You can also obtain it by writing to the Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301, USA.

file:///usr/share/common-licenses/GPL
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

i

Contents

1 About this document 1

2 Terms and Definitions 3

3 TEX packages for the impatient 5

4 Meta-packages and dependencies 7

5 File Placement 9

5.1 File searching and libkpathsea / libkpse . 9

5.2 Directory trees . 9

5.3 Generated files . 10

5.4 Filenames and installation of alternative files . 11

5.5 Documentation . 12

6 Configuration 13

6.1 Configuration files . 13

6.2 Configuration update programs . 13

6.2.1 Font configuration . 14

6.2.2 Language/Hyphenation configuration . 17

6.2.3 Format configuration . 18

6.3 Best practices for packages that build-depend on the TEX system 18

6.3.1 Configuration . 18

6.3.2 Font cache data . 19

6.4 Command execution and format files . 19

6.5 The Dpkg Post-Invoke Mechanism . 20

CONTENTS ii

A Sample code 21

A.1 Sample code for font packages . 21

1

Chapter 1

About this document

This document provides a set of rules for the packaging of applications, fonts and input files
related to TEX within the Debian GNU/Linux distribution. It is still a in a draft state – some
things might not yet be fully implemented, and others are advisable, but not strictly necessary.
If in doubt, please ask on debian-tex-maint@lists.debian.org.

The latest copy of this document can be found in the Debian-TEX-Policy files in the
tex-common package.

Chapter 1. About this document 2

3

Chapter 2

Terms and Definitions

The following terms are used in this document:

TEX-related package Any Debian package that uses or provides parts of the TEX infrastructure,
i.e. the TEX or METAFONT program or derivatives thereof, fonts or input files in a TEXMF
tree, etc.

tex-common This package provides basic infrastructure and some configuration files for all
TEX-related packages, including the configuration update programs.

Basic TEX packages A Basic TEX package is a Debian package that provides the basic infras-
tructure for TEX-related programs. It should provide sufficient functionality for type-
setting most generated (La)TEX code, e.g. from docbook, debiandoc, or texinfo sources.
Usually, the Basic TEX packages will be divided into an architecture-dependent and an
architecture-independent package.

The arch-dependent package must provide at least one binary that is fully compatible
with Donald E. Knuth’s original TEX program, and it should provide the original TEX
itself. The output formats dvi, PostScript and Adobe PDF must be available, either di-
rectly or by conversion of other output formats. The arch-independent package must
provide at least the files necessary to create the formats for plain TEX and LATEX and the
input files required by the LATEX distribution, as well as the Computer Modern fonts.

TDS The TEX Directory Structure, which describes file placement for TEX input files.
The current version of the TDS is installed with this document as tds.pdf (file:
///usr/share/doc/tex-common/tds.pdf) and tds.html (file:///usr/share/
doc/tex-common/tds.html). The latest version of the TDS is available at http:
//www.tug.org/twg/tds/.

TEXMF tree One directory tree, arranged according to the TDS

TEX input file A file that is meant to be used by a TEX-related program; technically any file that
can be found by the /kpathsea/kpse library. This includes e.g. Type1 font files.

file:///usr/share/doc/tex-common/tds.pdf
file:///usr/share/doc/tex-common/tds.pdf
file:///usr/share/doc/tex-common/tds.html
file:///usr/share/doc/tex-common/tds.html
http://www.tug.org/twg/tds/
http://www.tug.org/twg/tds/

Chapter 2. Terms and Definitions 4

configuration update programs The configuration information from files provided by differ-
ent TEX-related packages must be merged and made available in appropriate form to the
various programs. This is usually done by scripts that write files into the TEXMFSYSVAR
tree.

Currently, the configuration update programs provided by tex-common are:
update-texmf, update-fmtutil, update-language, update-updmap.

5

Chapter 3

TEX packages for the impatient

• A package that only installs TEX input files, e.g. a new LATEX package, should install them
in the TEXMFMAIN tree (/usr/share/texmf/) at the place indicated by the TDS,
see tds.html (file:///usr/share/doc/tex-common/tds.html) and ‘File search-
ing and libkpathsea / libkpse’ on page 9, and register them in the maintainer
scripts, usually by calling dh_installtex in debian/rules

• Packages that add fonts, hyphenation patterns or formats, or want to change the ba-
sic configuration in texmf.cnf, need to follow the rules in ‘Configuration update pro-
grams’ on page 13 in addition to that.

file:///usr/share/doc/tex-common/tds.html

Chapter 3. TEX packages for the impatient 6

7

Chapter 4

Meta-packages and dependencies

The TEX Live collection of basic and add-on TEX packages provides some meta-packages for
the convenience of users.

Depending on the texlive-* or tetex-* metapackages is only acceptable for editors, IDEs
and other tools which handle user-generated code. TEX add-on packages, as well as automated
input generators etc., must instead depend on a list of individual texlive packages which are
actually used. 1

1This is, for example, required to be able to adapt dependencies of metapackages according to the users’ needs.

Chapter 4. Meta-packages and dependencies 8

9

Chapter 5

File Placement

This chapter describes the placement of TEX input files, so that they can be found by programs.
Files that are not input files for TEX or related programs must not be put in a TEXMF tree (put
them into /usr/share/package instead). As an exception, documentation files in plain text
may be used inside a TEXMF tree, e.g. to explain the purpose of an otherwise empty directory.

5.1 File searching and libkpathsea / libkpse

File locations must follow the TEX Directory Structure, TDS. The TDS specification is avail-
able as tds.pdf (file:///usr/share/doc/tex-common/tds.pdf) and tds.html (file:
///usr/share/doc/tex-common/tds.html), and the latest version of the TDS is avail-
able at http://www.tug.org/twg/tds/. It is a bug if a package only conforms to an out-
dated TDS version. It is a more severe bug, however, if it conforms to the current TDS version
but does not make sure to depend on an appropriately recent version of the Basic TEX packages
or tex-common (that supports this TDS version).

The Basic TEX packages must provide a mechanism for searching through TEXMF trees that
allows different files to be found depending on the invoking program and the specified file
format. The only existing implementation is the libkpathsea library. Unfortunately, it was
not originally designed for use as a dynamic shared library. A rewrite is under way to create a
libkpse library with proper API specification and ABI compatibility. For the time being, the
Basic TEX packages can provide a shared library, and program maintainers can decide to use it,
or to link statically against their own copy of the code.

For use in scripts, the Basic TEX packages provide the utilities kpsewhich, kpsepath,
kpsexpand, and kpsestat.

5.2 Directory trees

The following TEXMF trees are defined, as outlined below:

file:///usr/share/doc/tex-common/tds.pdf
file:///usr/share/doc/tex-common/tds.html
file:///usr/share/doc/tex-common/tds.html
http://www.tug.org/twg/tds/

Chapter 5. File Placement 10

1 /usr/share/texmf-tetex/, part of TEXMFDIST

2 /usr/share/texmf-texlive/, part of TEXMFDIST

3 /usr/share/texmf/, referenced as TEXMFMAIN

4 /var/lib/texmf/, referenced as TEXMFSYSVAR

5 /etc/texmf/, referenced as TEXMFSYSCONFIG

6 /usr/local/share/texmf/, referenced as TEXMFLOCAL

7 Any directories listed in the TEXMFHOME configuration variable in texmf.cnf or as
an environment variable,

8 optionally user-specific directories for configuration files (TEXMFCONFIG) and gener-
ated files (TEXMFVAR)

The search order is from bottom up (files in TEXMFHOME taking precedence over files in
TEXMFMAIN) etc.

The role of the trees TEXMFMAIN and TEXMFDIST in Debian differ from upstream’s original
usage. Upstream uses TEXMFMAIN for the files that have to match the binary executables and
TEXMFDIST for other TEX input files that are replaced when a new texmf tarball appears; this
distinction is not necessary on a system with a decent package managment system. Instead,
the basic TEX packages install their files into their TEXMFDIST directories 1 , while TEXMF-
MAIN is used by TEX add-on packages for their files and allows them to shadow older versions
provided by the basic TEX packages. A couple of files from the basic TEX packages still need to
be placed in TEXMFMAIN 2.

The order of basic TEX packages in TEXMFDIST may be changed by the user or by the basic
TEX packages, and no implementation may rely on a particular order. This implies that for a
package that needs a version of a particular file newer than provided by one of the basic TEX
packages, it is not sufficient to declare a dependency on the other basic TEX package(s)3.

Debian packages generally install files in TEXMFMAIN, and may ship or create empty di-
rectories in the other trees, in accordance with Debian Policy. Configuration file handling in
TEXMFSYSCONFIG is described below in ‘Configuration files’ on page 13. Packages should
take care to ignore TEXMFHOME in their maintainer scripts.

5.3 Generated files

Generated files should be created below TEXMFSYSVAR (or the user-specific variable directo-
ries, TEXMFVAR), with the subdirectory structure conforming to the TDS. Generated font files

1This is new, and the basic TEX packages currently transition their files to the new place.
2Reasons include hardcoded paths in executables as well as the need for e.g. pool files to exactly match the

binaries’ version, so that shadowing must be prevented.
3Of course this is only a problem if the file is needed in the configure phase. If it is needed only at runtime, a

README file to instruct the local admin should be sufficient.

Chapter 5. File Placement 11

will either be created in each user’s TEXMFVAR tree, or in the VARTEXFONTS tree4

An exception is the generated file /etc/texmf/texmf.cnf. It is not intended that local
administrators edit that file, but if they do, the configuration update programs must respect
these changes. Debian packages must not alter that file.

5.4 Filenames and installation of alternative files

Packages may not install files with the same name as a file already installed in a TEXMF tree,
unless both files are in subdirectories where they will only be found by different applications,
as determined by the --progname or --format switches to kpsewhich.

There are two exception to this rule:

1 Basic TEX packages install their files into their TEXMFDIST directory and will usually
contain files that are also in other basic TEX packages.

2 Packages that need newer versions of a file than already supplied by a basic TEX package
and installed in TEXMFDIST can place them into TEXMFMAIN. Thus, the outdated file
will be shadowed, and the new one is in effect.

The maintainer of the basic TEX package should be made aware of the problem 5 The
package maintainer must make sure to follow new releases of the basic TEX packages and
not continue shadowing a file that is newer than the version provided by the shadowing
package.

The package must make sure that the newer version is backward-compatible, meaning it
must not break compilation of any TEX document, and it should not change the output
file. A change of the output file may be acceptable if an obviously buggy behavior is
corrected, and if it had previously not been possible to easily fix this behavior in user’s
documents (or if the updated package and a possible fix in the document combined lead
to a correct document).

Installing more than two versions of a file will most likely lead to confusion. Therefore,
the possibility to shadow a file once should be enough, and the usage of dpkg-divert
is discouraged.

It is also discouraged to use a file other than from the canonical source for that file, usually the
CTAN network.

4Per default, this tree is located in the world-writeable directory /tmp/texfonts/, in order to allow automatic
package builds to work without user directories. On multi user systems, the admin might want to change this to a
persistent directory and set up proper permissions

5A wishlist bug on the shadowing package, blocked by an other wishlist bug on the basic TEX package, can
help tracking these issues.

Chapter 5. File Placement 12

5.5 Documentation

Packages should make documentation available to texdoc. This can be done be either in-
stalling the files below /usr/share/doc/texmf, or by providing symlinks from subdirecto-
ries of that location to the actual documentation files. To allow partial parallel installation of
different basic TEX packages, these always install their documentation files into /usr/share
/doc/packagename and put symlinks into their respective TEXMFDIST.

A package must not install files into (subdirectories of) /usr/share/texmf/doc, which is a
symbolic link to /usr/share/doc/texmf.

The entry points for documentation should have names that indicate what they document.
Names like manual.pdf or index.html should be avoided, even if the directory name is
unmistakable 6.

6This allows users to say texdoc packagename directly. Otherwise they will first have to find the right
command line (e.g. texdoc packagename/user.dvi) using texdoc -s keyword

13

Chapter 6

Configuration

6.1 Configuration files

Files that are used to modify the behavior of executables must be treated as any other config-
uration file in a Debian package. However, files that are used to control the typeset output -
the appearance of documents - need not be treated as configuration files. It is up to the main-
tainer of the package to decide which files make sense to be used for site-wide (as opposed to
per-project or per-document) customization.

A typical case for a site-wide configuration file is a file that must be changed if a style file
should use additional modules (installed, for example, into TEXMFLOCAL). Options that only
control document output are rather used for a particular document or documentation project
and should usually not be installed as a configuration file.

Note that /etc/texmf/ is a usual TDS tree. Files can be put into appropriate TDS-conforming
subdirectories (e.g. /etc/texmf/fonts/map/), but directories not specified in TDS (or
added Debian-specifically in tex-common’s files in /etc/texmf/texmf.d/) are generally
not searched for TEX input files and can be used by packages for configuration files that are not
TEX input files (e.g. the files in subdirectories fmt.d or updmap.d).

6.2 Configuration update programs

The central configuration file for TEX applications is /etc/texmf/texmf.cnf, the
central font configuration file is /var/lib/texmf/web2c/updmap.cfg, the cen-
tral language/hyphenation configuration /var/lib/texmf/tex/generic/config
/language.dat, and format generation is determinded by /var/lib/texmf/web2c
/fmtutil.cnf. All four files are generated by configuration update programs from con-
figuration files in subdirectories of /etc/texmf. For updmap.cfg, language.dat and
fmtutil.cnf, this is the only method of configuration. texmf.cnf can be edited manually
by local system administrators, and changes will be handled by ucf. Package installation
scripts, however, must not change this file, but use the update-texmf mechanism. Local
administrators are encouraged to use the update-texmf mechanism, too.

Chapter 6. Configuration 14

Packages are free to add configuration items to the common configuration files, but they should
not try to override configuration items that are supplied by other packages. Rather, shared
configuration items should be supplied by the Basic TEX packages or any other package on
which all involved packages depend, with a setting appropriate for all. If this is impractical, the
involved packages must at least agree on the way different packages override other’s settings1.

Maintainer scripts should call update-updmap with the option --quiet. Besides that, the
configuration update programs should be called without any options to allow for internal
changes, e.g. of the directories where the generated files are placed.

Packages that changed updmap.cfg must call updmap-sys as detailed in ‘Font configura-
tion’ on the current page. Packages that changed language.dat or fmtutil.cnf must call
fmtutil-sys (see below). They must make sure to issue the mktexlsr command before
this.

6.2.1 Font configuration

A package that provides PostScript Type 1 fonts for TEX should be usable with any Basic
TEX Package. The recommended way to implement the configuration scheme described be-
low is to use the debhelper program dh_installtex provided by tex-common. See
dh_installtex(1) for usage details.

Description of manual font package setup

This section describes how dh_installtex manages font packages, and what packages need
to do that want to do without it.

For the rest of this section, we’ll assume we are dealing with a package named package that
installs PostScript Type 1 fonts for TEX. package should fulfill the following requirements:

1 It should depend on tex-common but not on any Basic TEX Package, unless needed for
another task than simply installing the fonts for TEX.

2 It should install the necessary map files (.map extension) below TEXMFMAIN/fonts
/map. The precise location must conform to the applicable TDS version.

3 It should also obviously install other needed or useful files provided by upstream to use
the fonts with TEX-related programs (.pfb, .tfm, .enc, .fd, .sty, documentation,
etc.).

4 It should install one or more configuration files with names following the pattern
20name.cfg into /etc/texmf/updmap.d/2. Such files will be later merged by

1Note that in texmf.cnf, as well as in the sequence of multiple texmf.cnf files that are read, earlier entries
override later ones.

2Filenames starting with 10 are reserved for the Basic TEX packages. However, sorting order is actually only
relevant for snippets for texmf.cnf, fmtutil.cnf and language.dat.

Chapter 6. Configuration 15

update-updmap to form /var/lib/texmf/web2c/updmap.cfg, the effective con-
figuration file for updmap-sys.

Exactly what to put in these files is documented in update-updmap(1). Basically, they
should contain the pseudo-comment:

-_- DebPkgProvidedMaps -_-

as well as the usual Map and/or MixedMap lines that package needs to add to /var/lib
/texmf/web2c/updmap.cfg.

5 It should install a file named /var/lib/tex-common/fontmap-cfg/package.list
that contains a reference to every .cfg file from the previous step, one per line. For
instance, if package installs 20foo.cfg and 20bar.cfg into /etc/texmf/updmap.d
/, the contents of /var/lib/tex-common/fontmap-cfg/package.list should be:

20foo
20bar

This package.list file must be shipped in the .deb, so that when package is removed
(not necessarily purged), package.list disappears from /var/lib/tex-common
/fontmap-cfg/.

6 It should run:
• in package.postinst;
• when package.postrm is called with remove or disappear as its first argument

the following commands in this order: update-updmap --quiet, mktexlsr and
updmap-sys.

Since mktexlsr and updmap-sys are provided by the Basic TEX Packages,
package.postinst has to ensure that they are only called when found in $PATH (un-
less package depends on the Basic TEX Packages for some reason). In package.postrm,
the same considerations must be taken into account, with the addition that tex-common
(that provides update-updmap) can be unconfigured or even uninstalled.

Note that even when tex-common is configured, it cannot be assumed that
update-updmap, mktexlsr and updmap-sys can be safely run whenever available,
because they internally use kpsewhich which only works after the libkpathsea li-
brary in a separate package has been configured properly.3 The following check can be
used to determine whether libkpathsea is configured:

if kpsewhich --version >/dev/null 2>&1; then
echo "kpsewhich is installed and libkpathsea is configured."

else
echo "Either kpsewhich is not installed, or libkpathsea is not configured."

fi
3However, update-updmap uses libkpathsea only in user-specific-mode. In system-wide mode, it doesn’t

matter whether libkpathsea is configured or not.

Chapter 6. Configuration 16

A sample implementation of this scheme can be found in ‘Sample code for font packages’ on
page 21, but the recommended way to implement this scheme is to use dh_installtex.

Rationale

The rest of this section explains the rationale behind the previous recommendations.

• The dependency on tex-common ensures that in package.postinst,
update-updmap can be run and texmf.cnf is in a sane state, so that mktexlsr
and updmap-sys can be run safely (if present and if libkpathsea is configured).

• The recommended order for running the programs update-updmap, mktexlsr and
updmap-sys ensures that updmap-sys can locate the newly-installed files (in partic-
ular, the map files shipped by package), since mktexlsr is run before updmap-sys.
It is also run after update-updmap, because /var/lib/texmf/web2c/updmap.cfg
might have been created by update-updmap, although it more probably already ex-
isted. And since it would be of no use to call mktexlsr before update-updmap, we
recommend to run it after, just in case.

• Now, about the “magic comments” in /etc/texmf/updmap.d/*.cfg and the
package.list file in /var/lib/tex-common/fontmap-cfg/. When that package
is removed, but not purged, it has to make sure that its update-updmap configuration
files in /etc/texmf/updmap.d/ are ignored. Otherwise, any call to updmap-sys by
an other package or the local admin would fail because it cannot find package’s map files.
Besides, we want the /etc/texmf/updmap.d/*.cfg files to be conffiles (unless we
really have no other choice), because then dpkg automatically handles upgrades while
preserving user modifications for them. As a consequence, moving the .cfg files from
package out of the way when it is removed is not an option. Moreover, the user would
wonder where his configuration files have gone in such a case.

The solution we chose was to add a little bit of logic into update-updmap, so that when-
ever it sees a .cfg file (let’s call it 20foo.cfg) that has the “magic comment”, it actually
includes its contents into updmap.cfg if, and only if:

– it is up-to-date (which is assumed if 20foo.cfg.dpkg-new doesn’t exist in the
same directory);

– 20foo appears on a line by itself in one of the .list files in /var/lib
/tex-common/fontmap-cfg/.

Additionally, that .list file should be named package.list if 20foo.cfg comes
from package, for simple reasons of tidiness.

With this little mechanism in place, all the rest follows as expected:

– When package is removed, but not purged, package.list is first removed
by dpkg from /var/lib/tex-common/fontmap-cfg/, thus disabling the the
.cfg files shipped by package as far as update-updmap is concerned. Then,

Chapter 6. Configuration 17

package.postrm calls update-updmap, mktexlsr and updmap-sys, with
the result that package’s map files aren’t listed anymore in the final map files
(psfonts.map, pdftex.map. . .) generated by updmap-sys.

– If package is reinstalled later, two files are first created by dpkg during the
unpack phase: /var/lib/tex-common/fontmap-cfg/package.list and
/etc/texmf/updmap.d/20foo.cfg.dpkg-new. As long as the second one
exists, the conffile /etc/texmf/updmap.d/20foo.cfg will be ignored by
update-updmap4 because it may be outdated. Eventually, package is configured;
package.postinst runs update-updmap, mktexlsr and updmap-sys, and
the .cfg files shipped by package aren’t ignored by update-updmap this time, since
they are referenced in /var/lib/tex-common/fontmap-cfg/package.list
and the .dpkg-new files don’t exist anymore. Thus, the map files shipped by pack-
age do end up in the final map files generated by updmap-sys.

6.2.2 Language/Hyphenation configuration

A package that provides additional hyphenation patterns for TEX should be usable with any
Basic TEX Package. The recommended way to implement the configuration scheme described
below is to use the debhelper program dh_installtex provided by tex-common. See
dh_installtex(1) for usage details. Note that for language.dat, order is important:
english should always be the first language.

These packages should put the actual hyphenation file into the respective places in TEXMF-
MAIN, and have them registered by putting a configuration file with extension .cnf into /etc
/texmf/language.d and calling update-language. The file contents will then be incor-
porated into /var/lib/texmf/tex/generic/config/language.dat, the effective con-
figuration file for TEX and friends’ hyphenations.

Hyphenation patterns present the same problem as described in the previous section for font
configuration files: If the package is removed, but not purged, the patterns are deleted, but
the configuration information is still in /etc/texmf/language.d/, and the format gen-
eration would fail if they would be included in language.dat. Therefore, an analogous
mechanism has been implemented as described for update-updmap: If a file in /etc/texmf
/language.d/ contains the “magic comment”

-_- DebPkgProvidedMaps -_-

it will only be used as long it is:

• up-to-date (which is assumed if the same file with .dpkg-new suffix doesn’t exist in the
same directory);

• listed in a file in /var/lib/tex-common/language-cnf/ which should have the
name package.list.

4An update-updmap call could take place if another package such as tetex-bin is configured in the mean-
time. That happens sometimes with APT.

Chapter 6. Configuration 18

Calling update-language is *not* sufficient to be able to use the new hyphenation pat-
terns; instead the formats that use it need to be regenerated. This can be done by running
fmtutil-sys --byhyphen ‘kpsewhich --progname=latex language.dat‘.

If a package that provides additional hyphenation patterns is removed, it must make
sure the formats are properly recreated without it. With the “magic comment” mecha-
nism, this means to run update-language and fmtutil-sys --byhyphen ‘kpsewhich
--progname=latex language.dat‘ in postrm

There is currently no mechanism (i.e., no update-language) for automatic addition of hy-
phenation patterns to formats that do not use the same hyphenation configuration file as LATEX.

The recommended way for implementing this scheme is to use dh_installtex.

6.2.3 Format configuration

As with font map configuration and language hyphenation patterns configuration, packages
that provide additional formats should be usable with any Basic TEX Package. The recom-
mended way to implement the configuration scheme described below is to use the debhelper
program dh_installtex provided by tex-common. See dh_installtex(1) for usage de-
tails. Note that for fmtutil.cnf, order is important: Formats will be created for each line,
and thus format files created from later lines will overwrite earlier ones.

These packages should put a configuration file according to fmtutil.cnf(5) into
/etc/texmf/fmt.d/, run update-fmtutil and subsequently create the format with
fmtutil-sys --byfmt format. fmtutil-sys will only try to create the format if it can
find the corresponding format.ini file (the last argument in an fmtutil.cnf line). There-
fore the format.ini file should not be a conffile.

If a package needs to create formats at runtime, it should use a local fmtutil.cnf with
the appropriate entries and specifiy its location to fmtutil on the command line, using the
--cnffile switch.

Upon package removal, update-fmtutil must be called in postrm, and the created
formats and log files should be removed from the directory specified by ‘kpsewhich
-var-value=TEXMFSYSVAR‘/web2c.

The recommended way for implementing this scheme is to use dh_installtex.

6.3 Best practices for packages that build-depend on the TEX sys-
tem

6.3.1 Configuration

If packages that build-depend on the TEX system need a changed configuration, they should
not try to provide it statically. If settings in any other configuration file are inappropriate for
a package to build, this is (usually) a bug in the package that provides the file. It should

Chapter 6. Configuration 19

be fixed in this package, not circumvented by a workaround in the build process. Such
workarounds have proven to be problematic, because they might stop working after changes
in the depended-on package, and such failure cannot be foreseen by its maintainers. If a
change is still necessary, the package should use the configuration update programs with the
--outputdir and --add-file options.

6.3.2 Font cache data

Font cache data are created each time a font in METAFONT format is used, and placed by
default in TEXMFVAR. During package build, this has to be avoided. In order to be able to
clean up the generated files (and only those), the font cache should instead be put below the
build directory. This can be achieved by setting TEXMFVAR to a subdirectory of the current
directory, e.g. $(CURDIR)/.texmf-var, using Make’s built-in variable. Packages which
do not change TEXMFVAR must not create documentation that uses METAFONT fonts in the
binary target.

6.4 Command execution and format files

If TEX formats need to be generated before execution, this should be done in the post-
installation script. Packages that depend on an executable can thus simply declare Depends:
on the package providing the executable, and only do that. Any additional checks, e.g. for
the existence of format files, is unnecessary and harmful, causing internal changes (e.g. of for-
mat file extensions) to break the depending package that does this check. Maintainer scripts or
programs in Debian packages should always use fmtutil or fmtutil-sys for format gener-
ation, and either add a fmtutil.cnf snippet in /etc/texmf/fmt.d/ (with fmtutil-sys,
for site-wide formats), or use fmtutil with the --cnffile option and an appropriate local
fmtutil.cnf (for runtime programs)

Local administrators can override settings from texmf.cnf with environment variables; this
has sometimes lead to errors in postinst scripts. It is recommended that postinst scripts
unset relevant variables before format creation or other problematic tasks.

If an add-on package generates a format upon installation that needs a base format (e.g. la-
tex.fmt), it must not load the existing base format 5. Instead the fmtutil.cnf snippet and
the format.ini file must be changed so that the process of format creation is repeated. For
example, if upstream creates their format by loading latex:

5The reason is that, in order to avoid other problems, update-fmtutil ignores files in /etc/texmf/fmt.d
that have a corresponding .dpkg-new file, and that it is necessary to recreate all formats when pool files or engines
are updated. Thus, some Basic TEX packages call fmtutil --all in their postinst scripts. When Basic TEX pack-
ages are upgraded together while a package that loads latex.fmt is installed and configured, then one of the Basic
TEX packages’ postinst will call update-fmtutil and fmtutil --all while others are is still unconfigured and
have .dpkg-new files. Consequently, no format information for e.g. LATEX is available, and the generation of the
format that wants to load it would fail. However, since all files needed to create e.g. latex.fmt are available, the
depending format can \input latex.ini and create its own format without problems.

Chapter 6. Configuration 20

latex pdfetex language.dat -translate-file=cp227.tcx *latex.ini
jadetex etex language.dat &latex jadetex.ini

and the following jadetex.ini file:

\input jadetex.ltx
\dump

then the Debian package maintainer must load latex.ini instead of latex.fmt, making
sure that \dump in latex.ltx has no effect, and create the following new jadetex.ini:

\let\savedump\dump
\let\dump\relax
\input latex.ini
\let\dump\savedump

\input jadetex.ltx
\dump

and the following snippet for fmtutil.cnf:

jadetex etex language.dat -translate-file=cp227.tcx *jadetex.ini

6.5 The Dpkg Post-Invoke Mechanism

This section was intended to deal with a once-planned mechanism that would allow to delay
running of mktexlsr, updmap and perhaps even “fmtutil –all” until all TEX-related packages
that want to do this are configured. Thus, it would be unnecessary to call the programs multi-
ple times. Coding this is not hard, however it is unclear how it could be made sure that failures
get attributed to the correct package. Therefore this plan has been dropped.

21

Appendix A

Sample code

This section contains sample code that implements the recommodations of this document.

A.1 Sample code for font packages

Sample postinst script:

#
postinst-texfonts
#
postinst snippet for installing Type 1 fonts for TEX
#
Author: Florent Rougon <f.rougon@free.fr>
#
update_fontmaps()
{

update-updmap --quiet
All of the following needs an installed and configured
basic TEX system, so check this.
if kpsewhich --version >/dev/null 2>&1; then

mktexlsr is recommended now because updmap-sys relies
heavily on Kpathsea to locate updmap.cfg and the map files.
Also, it is slightly better not to specify a particular
directory to refresh because updmap.cfg is typically found
in TEXMFSYSVAR while the map files are in TEXMFMAIN or
TEXMFDIST.
if which mktexlsr >/dev/null; then mktexlsr; fi
if which updmap-sys >/dev/null; then

printf "Running updmap-sys... "
updmap-sys --quiet

Chapter A. Sample code 22

echo "done."
fi

fi

return 0
}

case "$1" in
configure|abort-upgrade|abort-remove|abort-deconfigure)

update_fontmaps
;;

*)
echo "postinst called with unknown argument ’$1’" >&2
exit 1

;;
esac

Sample postrm script:

#
postrm-texfonts
#
postrm snippet for installing Type 1 fonts for TEX
#
Author: Florent Rougon <f.rougon@free.fr>
#
tell_that_errors_are_ok()
{

Cheap option handling...
if ["$1" = -n]; then

prog="$2"
endwith=’ ’

else
prog="$1"
endwith=’\n’

fi

printf "\
Trying to run ’$prog’ (error messages can be ignored if tex-common
is not configured)...$endwith"

return 0
}

Chapter A. Sample code 23

The function name is *try_to*_update_fontmaps because the following
scenario might happen:
1. this package is deconfigured
2. tex-common and tetex-bin are removed
3. this package is removed or purged
#
(cf. Policy § 6.5, step 2, about a conflicting package being removed due
to the installation of the package being discussed).
#
In this case, update-updmap, mktexlsr and updmap-sys would all be gone once
tex-common and tetex-bin are removed, so we must append "|| true" to their
calls.
try_to_update_fontmaps()
{

Don’t print alarming error messages if the programs aren’t even
available.
if which update-updmap >/dev/null; then

tell_that_errors_are_ok -n update-updmap
update-updmap --quiet || true
echo "done."

fi

All of the following needs an installed and configured basic TEX system.
If there is one, register the fonts. Otherwise, that will be done later
when the basic TEX system is configured, so we can exit without
worrying.
kpsewhich --version >/dev/null 2>&1 || return 0

mktexlsr is recommended now because updmap-sys relies heavily on
Kpathsea to locate updmap.cfg and the map files. Also, it is slightly
better not to specify a particular directory to refresh because
updmap.cfg is typically found in TEXMFSYSVAR while the map files are in
TEXMFMAIN.
if which mktexlsr >/dev/null; then

tell_that_errors_are_ok mktexlsr
mktexlsr || true
echo "done."

fi

if which updmap-sys >/dev/null; then
tell_that_errors_are_ok -n updmap-sys
updmap-sys --quiet || true
echo "done."

fi

return 0

Chapter A. Sample code 24

}

case "$1" in
remove|disappear)

try_to_update_fontmaps
;;

purge)
Supposing updmap.cfg & Co are clean (which I think is a reasonable
assumption), we don’t need to call try_to_update_fontmaps().
Calling it on remove _and_ on purge just for hypothetical users
who would break their config before purging this package seems to
be more annoying than useful (it takes a lot of time).

;;

upgrade|failed-upgrade|abort-upgrade|abort-install)
;;

*)
echo "postrm called with unknown argument ’$1’" >&2
exit 1

;;
esac

	About this document
	Terms and Definitions
	TeX packages for the impatient
	Meta-packages and dependencies
	File Placement
	File searching and libkpathsea / libkpse
	Directory trees
	Generated files
	Filenames and installation of alternative files
	Documentation

	Configuration
	Configuration files
	Configuration update programs
	Font configuration
	Language/Hyphenation configuration
	Format configuration

	Best practices for packages that build-depend on the TeX system
	Configuration
	Font cache data

	Command execution and format files
	The Dpkg Post-Invoke Mechanism

	Sample code
	Sample code for font packages

